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General-Purpose Harmonic Balance Analysis
of Nonlinear Microwave Circuits
Under Multitone Excitation
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FRANCO MASTRI

Abstract — This paper describes a powerful software tool for the simula-
tion of nonlinear microwave circuits under single- or multiple-frequency
excitation. The program operates in a truly general-purpose fashion, both
circuit topology and active devices equivalent circuits being arbitrarily
established by the user at the data entry level. Built-in facilities based on
the multidimensional Fourier transform allow a straightforward and unre-
stricted treatment of mixer and intermodulation problems. Application
capabilities are illustrated by a number of practical examples.

I. INTRODUCTION

HE STEADILY growing importance of nonlinear mi-

crowave CAD techniques is attested to by the consid-
erable number of research teams who have been making
contributions to this field in the recent technical literature.
What is probably more important, attention is currently
being devoted to this subject within U.S.-Government-
sponsored research activities such as the MIMIC program
[1]. The complexity of the nonlinear CAD problem cer-
tainly warrants such an extensive effort. In fact, while
some basic aspects, for example the simulation of periodi-
cally driven circuits, are relatively well settled, others, such
as general noise analysis, are for the most part still at the
stage of theoretical investigation [2].

At present, a good deal of research activity is geared
toward the development of efficient frequency-domain
methods for nonlinear circuit analysis under multitone
excitation. For many years this problem has been treated
by a variety of approximate procedures (e.g., [3]-[7]) whose
principal function was to limit as far as possible the
computational resources (both memory occupation and
CPU time) required to do the job. Now, however, large
memories and powerful CPU’s tend to be available even in
relatively small-size systems (not to mention supercomput-
ers), so that full nonlinear numerical approaches to the
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multitone problem are becoming increasingly attractive.

Within the general framework of harmonic balance (HB)
techniques, several solution schemes are available, based
on single- or multidimensional Fourier transformation. In
Section II of this paper we present a brief review of such
methods (at least, of the best known ones), and try to
point out their suitability for implementation in a general-
purpose CAD environment. This aspect is of primary
importance from the engineering standpoint, since a defi-
nite need exists for general-purpose numerical tools allow-
ing conceptual developments to be realized in the solution
of real-world simulation and design problems.

A certain amount of work in this direction has already
been carried out. User-oriented programs for the analysis
and optimization of perodically driven circuits have long
been in the literature [8]-[10], and more recently software
tools for the treatment of quasi-periodic regimes have
become available, even commercially [11]-[15]. This paper
is mainly devoted to the presentation of a harmonic bal-
ance simulator, named LARSIM, which was developed at
the University of Bologna (Italy) in a joint effort of several
research teams. A unique feature of this program is that
nonlinear circuit analysis under three-tone excitation is
implemented here in a general-purpose format.

Section III of the paper is devoted to a discussion of the
basic system choices that have led to the definition of the
program structure as it is now. In Section IV we describe
the algorithmic basis for the treatment of multiple-
frequency inputs via the mulitidimensional Fourier trans-
form. Finally, in Section V we present a set of numerical
and experimental results giving a clear account of the vast
potential of this software tool for microwave applications.

II. MULTITONE ANALYSIS ALGORITHMS

The problem of a circuit driven by a multiple-frequency
input is one of fundamental importance for practical appli-
cations. Typical examples are mixer and intermodulation
analysis. Since input power levels may be completely arbi-
trary, at least in principle, approximate approaches such as
conversion-matrix techniques are not acceptable for a gen-
eral-purpose simulator, and a full numerical solution must
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be implemented. The main difficulty consists in finding the
spectral components of the nonlinear subnetwork response
to a multitone excitation. This problem has received a
good deal of attention, and a number of solutions suitable
for microwave applications are now available.

The simplest idea is to reduce the quasi-periodic regime
to a strictly periodic one by taking the greatest common
divider of the intermodulating tones as the fundamental
frequency of operation, and then to use the fast Fourier
transform. This approach has the obvious advantage of
immediateness, since it allows any standard harmonic bal-
ance program to be used for mixer or intermodulation
analysis; in fact it has been successfully applied by several
authors in the technical literature (e.g., [16]-[18]). The
main limitation arises from the fact that low values of the
fundamental may lead to huge storage and CPU time
requirements, which can easily exceed the available re-
sources of even large supercomputers. This results in con-
siderable restrictions on the combinations of input fre-
quencies that are practically usable, which makes this
choice unsuitable for a general-purpose simulator. It is
quite clear that such limitations are due to the one-dimen-
sional philosophy of the numerical method: when the
fundamental is low, and thus the spectrum is very sparse,
the required number of sampling points may far exceed
the number of degrees of freedom of the signal waveforms;
that is, the calculations performed are extremely redun-
dant.

One way of strongly reducing such redundancy is to
resort to multidimensional Fourier transformation [12}.
Once again the basic idea is very simple: the instantaneous
phase of each of the intermodulating signals is treated as
an independent variable, so that the time-domain nonlin-
ear subnetwork response becomes a multiple-periodic
function (see Section IV). Time-domain sampling thus
requires a multidimensional grid of sampling points, and
conversion to the frequency domain can be performed by
multiple Fourier transformation. The crucial point here is
that the number of sampling points with respect to each of
the independent time variables is related only to the maxi-
mum order of intermodulation products to be considered,
and is not affected by the actual frequency values. The
nice feature of this approach is that it can be implemented
in a conventional harmonic balance program without any
major change of the original program structure, and thus
with little programming effort. Also, the subroutines for
nonlinear device description are exactly the same, which is
a considerable advantage for a user willing to employ his
own device models.

The only drawback is that the grid sampling mechanism
adopted still implies a certain degree of redundancy, which
cannot be eliminated. To understand this point, let us
consider a standard two-tone intermodulation (IM) prob-
lem. If all the IM products of two input frequencies w;, w,
up to a given order M are significant, any time-dependent
electrical quantity may be given the form

x(1)= Y Xkl,kzexp[j(k1w1+k2w2)t]
kyy ko

(1)
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where

0 <lky|+ byl < M. (2)
In this case the number of degrees of freedom of the signal
is 2M?+2M +1, but the two-dimensional Fourier ap-
proach requires a minimum of (2M +1)? sampling points,
which is redundant by a factor of 2 (asymptotically for M
large). Intuitively, (2) defines a triangular set of spectral
lines, while the double Fourier transform requires a rectan-
gular matrix of sampling points. Of course, the degree of
redundancy depends on the truncation criterion adopted

for the infinite summation (1).

Some analysis approaches allowing a nonredundant
sampling are indeed available in the literature.

The matrix method described in [11] makes use of a
number of sampling points exactly equal to the number of
degrees of freedom of the signal waveforms. This leads to a
system of linear equations for the cutput harmonics, which
is solved to perform the transform. The sampling points
must be suitably chosen in order to ensure that the system
is well conditioned. The advantage of this approach is that
a strictly nonredundant sampling is always carried out, no
matter what the actual signal spectrum. The obvious draw-
back is that the algorithm performs a conventional, rather
than a fast Fourier transform, in the sense that it does not
take advantage of the well-established techniques for re-
ducing the number of operations on which all FFT algo-
rithms are based. This implies a consistent loss of numeri-
cal efficiency, so that this transform is usually slower than
the multidimensional Fourier transform despite the re-
duced number of sampling points.

As an example, let us consider the IM problem defined
by (1) and (2) with M =7, This can be analyzed by a
double FFT of size 16 X 16, requiring about 5.5 ms on a
VAX 8800 (after initialization) by standard library rou-
tines. On the other hand, in this case the signal (1) has 113
degrees of freedom. Thus to carry out the same transform
by the matrix method, one has to multiply a square matrix
of order 113 by a vector of the same size. This takes about
20 ms on the VAX 8800. The difference is a growing
function of the number of points.

A conceptually very attractive method is to carry out a
one-dimensional Fourier analysis in a transformed fre-
quency domain which is related to the physical one by a
suitable mapping law [19]. In the transformed domain the
exciting frequencies are chosen to be rationally indepen-
dent with respect to an equivalent order of nonlinearity,
corresponding to the maximum order of intermodulation
products that are taken into account; this guarantees the
frequency independence of the Fourier coefficients within
the prescribed set of spectral lines. As a result, the original
spectrum, having a few lines with large embedded gaps, is
replaced by a transformed spectrum with drastically re-
duced gaps; in the standard IM problem defined by (1)
and (2) the gaps are completely eliminated and the analysis
is nonredundant. In exchange for its merits, this method is
considerably more complex than the multidimensional FFT
from the viewpoints of both program structure and nonlin-
ear device description. This is particularly true in the
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three-tone case, since then the selection of the mapping
law is not straightforward [19].

The methods of analysis discussed above have been
demonstrated to be suitable for use within general-purpose
programs for the simulation of nonlinear circuits under
multiple-frequency excitation [11]-[14], [18], [19]. With the
differences that have been pointed out, they share numeri-
cal accuracy, generality of application, and ease of imple-
mentation, and are thus most interesting from a practical
viewpoint.

Of course, several other procedures have been developed
for numerically solving the multitone problem. These in-
clude least-squares approximation [5], sampling at a re-
duced rate combined with linear superposition [4], [7], [20],
and frequency shifting followed by digital filtering [21].
However, at least up to now, these approaches do not seem
to have attained the degree of generality and maturity that
the previous ones offer.

III. AVAILABLE OPTIONS AND ACTUAL CHOICES

FOR A HARMONIC BALANCE SIMULATOR

In this section we focus on the main “system choices”
that have led to the present structure of the LARSIM
program. There are many options available to anyone
willing to develop a harmonic balance simulator, and
different choices will result in profoundly different pro-
gram architectures and performances. The topics to be
discussed, which represent the cornerstones of any har-
monic balance simulator, are listed below:

circuit analysis approach

nonlinear device description

evaluation of nonlinear device responses to a multi-
tone excitation

. nonlinear solution algorithm

gradient evaluation mechanism.

mo Oy

A. Circuit Analysis Approach

A very basic choice concerns the circuit analysis method.
A common approach is to decompose the circuit into a
linear and a nonlinear subnetwork having the same num-
ber of ports [22]. The linear subnetwork is analyzed in the
frequency domain by conventional linear multiport tech-
niques, while the nonlinear subnetwork is described in the
time domain by a suitable set of device equations. Time- to
frequency-domain conversion is provided by the fast
Fourier transform. This is usuvally called a piecewise
harmonic balance (PHB) technique, and is particularly
convenient for the analysis of MMIC’s when modern so-
phisticated modeling techniques are used in the linear
subnetwork simulation [23]. In fact, when parasitics such
as bends in transmission lines and other discontinuities are
properly taken into account, the number of nodes of an
MMIC usually becomes much larger than the number of
subnetwork ports (often by an order of magnitude or
more). Furthermore, in an MMIC each node is usually
coupled to a considerable number of other nodes by a
variety of mechanisms (such as proximity, radiation, and
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surface waves). Thus the node admittance matrix density is
greatly increased, and sparse-matrix techniques [24] be-
come considerably less attractive than for (say) hybrid
circuits. An additional advantage of the PHB method is
that the linear multiport analysis module may be directly
replaced by any other with little interfacing effort. Thus
the program may be easily updated by inserting into it new
multiport analysis routines as soon as they become avail-
able. For these reasons the piecewise HB approach was
adopted in LARSIM.

On the other hand, if most circuit nodes are connected
with nonlinear devices, and the node admittance matrix is
very sparse, this may not be the best choice. In such cases
it may be convenient to use a nodal approach whereby the
entire network is simultaneously described as a whole by
means of Kirchhoff’s current law, and all node voltages are
automatically assumed as state variables [9]. However, for
an MMIC this usually implies a much less refined simula-
tion of the linear subnetwork, neglecting most junction
parasitics and internodal couplings.

B. Nonlinear Device Description

The nonlinear subnetwork is usually a set of nonlinear
devices which are best described by time-domain equa-
tions. A customary approach is to represent each device by
a multiport parallel conductance/capacitance model. This
means taking the voltages at the device ports as state
variables and expressing each current as a memoryless
function of such voltages plus the time derivative of an-
other memoryless function of the same quantities (e.g., [9],
[18], [25]). For increased generality we may remove the
above constraints, and allow the state variables to be
selected in a completely arbitrary way. In this case the
voltages and currents at the device ports are expressed by a
set of generalized parametric equations of the form [8]

dx d"x
o(1) =u[x(l),z."'357;,xp(f)}

(D =wlx(0), 5o S )
i(t)y=w|x(t), —, -+, —., x,(t 3

dt dt" 7P )
where w,w are vector-valued nonlinear memoryless func-
tions. In (3) x(7) represents the vector of time-dependent
quantities used as state variables, and x,(¢) is a vector of
time-delayed state variables, i.e.,

(4)

with 7, representing a time constant. For well-conditioned
devices the vectors appearing in (3) have a common size
ng, equal to the total number of device ports.

The use of (3) makes for increased ease and flexibility in
the mathematical description of the nonlinear devices. As a
typical example, we consider a microwave diode with a
nonlinear series resistance depending on the junction volt-
age x(¢). A circuit model for such a diode is given in Fig.
1. If we take x(¢) as the (only) state variable, the diode

xp, (1) =x,(t—1)
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Fig. 1. Equivalent circuit of a microwave diode.

equations may be written in the form

i(1) = glx()]+ Clx(r)]-dx/dt

v(t) = x(1) + Rs[x(1)] -i(2). (5)
In this case a simple description in terms of the external
voltage v(t) would be impossible.

The above approach was implemented in LARSIM for
both library and user-defined device models.

C. Evaluation of Nonlinear Device Responses to
a Multitone Excitation

For the reasons explained in Section II, the multidimen-
sional Fourier transform approach [12] was adopted in
LARSIM to evaluate the nonlinear subnetwork response
to a multitone excitation. This method seemed to provide
the best compromise between ease of programming, sim-
plicity of user interaction, and numerical efficiency.

D. Nonlinear Solution Algorithm

When using the HB technique, a circuit simulation prob-
lem is mathematically formulated as a system of nonlinear
algebraic equations of the form [10]

E(X)=0 (6)
where E is a vector of HB errors to be evaluated numeri-
cally, and X is the set of all state-variable harmonics. A
strategy for solving this system must be adopted by choos-
ing among a large number of possible algorithms. The
basic requirements are speed and robustness, which is
intended here as the ability to reach the desired solution
irrespective of the starting point. Unfortunately, these re-
quirements are often conflicting, since robust algorithms
tend to be slow and the converse is also true. As an
example, relaxation methods are extremely fast when they
work, but their convergence properties are poor [26]. Sys-
tem-solving algorithms such as the Newton iteration have
a good overall performance, but still may fail to converge
if the starting point is not close enough to the solution,
especially in the case of highly nonlinear circuits. Nonlin-
ear optimization algorithms are more robust, but become
exceedingly slow in the vicinity of the solution [9].

A good tradeoff is to adopt a Newton iteration flanked
by some other mechanism as a backup for improving
convergence at startup whenever needed. A number of
techniques were tried, including continuation methods [27],
and the best results were obtained by a quasi-Newton
method [28] based on a Hessian update formula of the
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Broyden family {29]. As a result, the solution algorithm
implemented in LARSIM works as follows. In ill-condi-
tioned cases the desired solution is first approached by the
quasi-Newton algorithm; then automatic switchover takes
place to a Newton iteration whereby the solution can be
refined to any prescribed degree of accuracy. In well-con-
ditioned cases the quasi-Newton iteration is bypassed. This
allows the program to be successfully applied to a large
number of different topologies including FET, bipolar-
transistor, and multipie-diode circuits.

E. Gradient Evaluation Mechanism

The problem of derivative or gradient evaluation is
obviously of importance for both the Newton and the
quasi-Newton iteration. There are basically two options
here: one is to compute the derivatives numerically by
perturbations, that is, by a simple incremental rule. The
other is to resort to a semi-analytic technique, which is
possible if the Jacobians of (3) with respect to the state
variables and to their time derivatives are available in
closed form.

Let us consider a circuit excited by F independent
sinusoidal tones of angular frequencies w, w,,:**, Wp. A
generic IM product will be identified by a vector k of
harmonic numbers k,, k,,- - -, kz. The corresponding an-
gular frequency will be denoted by

F
_ _1.T
Wy = Zkzwz_k w
=1

(™)

where  is the vector of the fundamentals, and the super-
script T denotes transposition. For any given state vector,
the Jacobians of (3) may be represented by generalized
Fourier series expansions. For example, for the currents at
the device ports we may write

aw

Iy = ZDm,kexp (Jegt)
y k

m

aw .
Fr 2.D§ pexp(jo,t) (8)

Dk

where y,=x, y,=d"x/dt"™ (1<m<n). The summa-
tions in (8) are extended to all possible vectors k. The
Fourier coefficients appearing in (8) can beused to express

the Jacobians of the current harmonics with respect to the
state-variable harmonics in the form [10]

W,

X, ©)

= Z (jws)mAm,k——s
m=0

where
Ao,k—s =Dg s+ Dg g ,XP (- ]"";")
(m>0) (10)

and 7 is the diagonal matrix of the time delays 7, appear-
ing in (4).

Am,k—s = Dm,k—s
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For practical purposes, (6) is usually treated as a system
of real equations in real unknowns, so that the real and
imaginary parts of the state-variable harmonics become
the actual problem unknowns. Since the state variables are
real-valued (X_, = X;*), from (9) we get

W, oo N
TR 2, ) B # (CD 8]
oW,

AmOe)] ~ 20 A= () 8]
(11)

Similar expressions hold for the Jacobians of the voltage
harmonics. From the above the Jacobians of the harmonic
balance errors can be derived by trivial algebraic calcula-
tions.

The semianalytic method is faster and more accurate
than the purely numerical approach, and is particularly
convenient when simple and smooth device models are
available, so that the analytic computation of the deriva-
tives appearing on the left-hand side of (8) is easy and
straightforward. On the other hand, many practical device
models may be very complicated, may even be defined
piecewise, resulting in cumbersome and sometimes ill-con-
ditioned expressions of such analytic derivates. This can be
annoying from the viewpoint of user interaction, particu-
larly when user-defined device models have to be imple-
mented. Once again, generality of application and ease of
interaction were given preference in LARSIM by choosing
to compute the Jacobians by the numerical approach.

IV. ALGORITHMIC ASPECTS

Let the nonlinear subnetwork be described by (3), and
let us consider a multitone excitation of the form

x(1) =§Xkexp(jwkt) (12)

where the same notations introduced in Section III have
been used. From (12) we get

d"x
d nt

=2k:[(jwk)ka]exp(jwkt) (1<m<n)

xp(1) =Z[Xkexp(_jwk'r)]exp(jwkt) (13)

k
where 7 is the same diagonal matrix appearing in (10). In
order to carry out a nonlinear circuit analysis by the
harmonic balance technique, we have to compute the spec-
tral components of the voltages and currents at the nonlin-
ear subnetwork ports in the quasi-periodic electrical regime
defined by (12). To do so, we treat the quantities

(1<i<F)

(14)

appearing in (12) and (13) as independent variables, so
that the state variables, their time derivatives, and their
delayed values can be viewed as 2#-periodic functions of

z;=wt
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each z,. Because of (3), the same is true for the voltages
and currents. By Shannon’s theorem, such functions are
uniquely identified by the set of values they take at

N, (1<i<F) (15)

where N, is the number of sampling points in the z,
dimension, satisfying

N, > 2K,. (16)

We denote by K, the maximum value of k, appearing in
the expansion (12). Equation (15) defines an F-dimen-
sional grid of sampling points.

Once a vector of state-variable harmonics (i.e., the set of
all X,’s) has been selected in some way (e.g., by the
generic step of an iterative solution algorithm), the coeffi-
cients of the expansions given by (13) are computed, and
the values of (12) and (13) are sampled at all points
defined by (15). Equations (3) then yield the sampled
values of the voltages and currents, from which the re-
quired spectral components are obtained by performing an
F-dimensional fast Fourier transform. The latter can al-
ways be reduced to a sequence of one-dimensional trans-
forms, but can also be treated by means of highly efficient
dedicated algorithms, at least in the two- and three-dimen-
sional cases. As an example, the algorithm described in
[30] allows FFT costs to be reduced by a factor of about 6
for F=3 when run on a Cray X-MP computer in the
typical case N, =16, N, = N, =§ (e.g., for mixer intermod-
ulation analysis).

The remaining parts of the analysis are just a straight-
forward application of conventional harmonic balance
principles [22].

The above algorithm has been implemented in LARSIM
for F<3, allowing full numerical analysis of arbitrary
nonlinear circuits under two- and three-tone excitation.
The program has facilities for the automatic determination
of the spectral lines required in the commonly encountered
cases of two- and three-tone IM analysis in general cir-
cuits, regular mixer analysis, and two-tone IM analysis in
mixers.

Besides mixer IM analysis, an example of which is given
in the next section, the three-tone capability opens the way
to a systematic treatment of some very difficult problems
for which general simulation methods have not been avail-
able until now. Among others we mention i) the analysis of
a mixer pumped by a local oscillator having an internally
generated spurious tone superimposed to the nominal out-
put; ii) the determination of the spurious responses pro-
duced by a mixer under the effect of a strong input
interfering signal; and iii) the computer-aided simulation
of three-tone intermodulation tests, which are common-
place in the linearity evaluation of digital radio subsystems
(especially for complex modulation formats). Work on
these subjects is in progress, and the results will be re-
ported elsewhere.
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Fig. 2. Schematic topology of a three-FET distributed amplifier.

V. NUMERICAL EXAMPLES

The purpose of this section is to illustrate the practical
convenience and the far-reaching capabilities of multitone
analysis software based on the principles outlined in the
previous sections. This is done by discussing the applica-
tion of LARSIM to a number of typical microwave engi-
neering problems.

A. Distributed Amplifier of Realistic Topology

Let us consider the three-stage distributed amplifier
whose layout is illustrated in Fig. 2. The FET’s and the
lumped components are shown schematically in this figure,
but the layout of the microstrip circuitry is represented on
scale. This circuit topology was obtained by reoptimizing
the distributed amplifier described in [31] for a 150 pm
GaAs substrate, with the additional constraint that the
amplifier size should not exceed 1X1.5 mm. The FET
small-signal equivalent circuit is the one given in [31]; the
extension of the model to large-signal operation is accom-
plished by the equations described in [32].

The circuit contains a large number of microstrip dis-
continuities (T junctions and chamfered bends) which have
a significant effect on its electrical performance. Further-
more, folding the microstrips to meet size requirements
results in long sections of parallel transmission lines with
edge-to-edge distances of 0.15 mm, whose electromagnetic
couplings may not be neglected. Note that these couplings
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Fig. 3. Transducer gain of the distributed amplifier depicted in Fig. 2.

do not harm the amplifier performance (including stabil-
ity), but must be accounted for in the optimization. Thus
the sets of microstrips enclosed in the dashed lines in Fig.
2 must be treated as single circuil. components with eight
and 12 ports, respectively. For this purpose LARSIM
makes available a lossy and dispersive coupled-microstrip
model (up to 12 coupled lines) based on the spectral-
domain approach [33]. The effects of couplings and para-
sitics on circuit performance are illustrated in Fig. 3, where
the amplifier gain is plotted against frequency in the 1-19
GHz band. Neglecting couplings results in a 750 MHz
reduction of the useful amplifier band, while negiecting
couplings and parasitics leads to a band reduction of more
than 3 GHz.

Two typical aspects of the computer-aided simulation of
realistic GaAs topologies are clearly apparent from the
above discussion. As a first point, the number of circuit
nodes required by an accurate description, including para-
sitics, may be much larger than the number of device
ports; e.g., for the simple amplifier of Fig. 2 the linear
subnetwork has 75 nodes and six ports. Furthermore, due
to coupling effects the circuit may include several compo-
nents having large numbers of ports. This leads to the
appearance of large, dense submatrices in the node admit-
tance matrix. For instance, the node admittance matrix of
the linear subnetwork for the amplifier of Fig. 2 contains
one 8 X8 and oune 12X 12 dense submatrix. It is clear that
this kind of situation is best dealt with by the piecewise
harmonic balance technique. For the circuit in Fig. 2, the
PHB makes use of only six state variables and a 6X6
matrix to describe the linear subnetwork.

In order to give the reader an idea of the numerical
performance of LARSIM, we report on a two-tone IM
analysis of the distributed amplifier shown in Fig. 2. The
two sinusoidal sources have an available power of 0 dBm
each, and their frequencies f; and f, are swept across the
amplifier band (i.e., from 2 to 18 GHz) while their differ-
ence is kept constant at S0 MHz. All IM products up to
the third order are taken into account (12 spectral lines
plus dc). The output powers at f,, f; + f,, and 2f, — f; are
plotted against frequency in Fig. 4. These results are
generated by LLARSIM in a single computer run. The
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Fig. 4. Fundamental output power and IM products of the distributed
amplifier depicted in Fig. 2.

typical computational time is about 1.3 CPU seconds per
frequency point on a Cray X-MP /48 using the vectorized
version of LARSIM. Note that 37 percent of this time is
spent in the linear subnetwork analysis.

As an example of a relatively large-size job, we consider
a nine-FET amplifier consisting of the cascade connection
- of three units identical to the one shown in Fig. 2. This
circuit ‘is fed by two sinusoidal sources, each with an
available power of —3 dBm, and having frequencies f, = 4
GHz and f,=4.05 GHz. A two-tone intermodulation
analysis is carried out with all IM products up to the third
order taken into account. The power spectra of the output
signals from the three stages of the cascade connection are
shown in Fig. 5. These results are genérated by LARSIM
in a single computer run requiring about 48 CPU seconds
on a Cray X-MP /48. The increased CPU time with respect
to the previous analysis is partly due to a threefold in-
crease in the number of Newton iterations required to
achieve convergence. This is related to the higher power
levels in the second and third stages. Note that this topol-
ogy has as many as 219 circuit nodes; furthermore, its
node admittance matrix contains three 8 X8 and three
1212 dense submatrices.

i

B. Large-Signal S Parameters

Large-signal circuit parameters (such as scatiering or
admittance parameters) of active devices are commonly
used in several microwave engineering practices, for exam-
ple, oscillator design (e.g. [34], [35]). It is thus interesting to
establish a numerical procedure for extracting such param-
eters from any one of the well-known time-domain device
models available in the technical literature. In this section
we show that a multitone analysis program based on the
multiple FFT, such as LARSIM, is ideally suited for this
purpose.

For the sake of clarity, we refer to Fig. 6, where the
common case of a biased FET is illustrated. A customary
way of defining large-signal S parameters is as follows
[34]. S, and S, are assumed to be functions of |V;| only,
and are found from a circuit analysis with E, = 0. Simi-
larly, S,, and §,, are assumed to be functions of |V,| only,
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Fig. 5. Output power spectra of a three-stage, nine-FET distributed
amplifier.

and are found from a circuit analysis with E, = 0. A major
drawback of this approach is that in the absence of input
drive, the nonreciprocal active device works in an electrical
regime substantially different from its real mode of opera-
tion. Thus S,, and S, may be affected by a large error.
This problem may be overcome by the *two-signal
method” [36], that is, by simultaneously exciting the device
with an input and an output source at the same frequency.
The circuit is analyzed for several values of the phase
difference between the two sources (and constant ampli-
tudes), and the ratios between incident and reflected wave
amplitudes at the two ports are monitored. On a Smith
chart, these complex ratios approximately depict four cir-
cles whosé¢ centres are the large-signal S parameters [36].

As an example, let us assume that the intrinsic FET chip
in Fig. 6 be described by the model of [37] with the
following set of parameters:

Vp=-32V B =0.0178
Cig0= 0.6 pF A =0.0018
V=08V a=1.71. (17)

The magnitude and phase of S,, as obtained from the
two-signal method are plotted in Fig. 7 against the input
available power for a fixed available power of the output
source (+12 dBm). Note that S,, is approximately con-
stant at low input signal levels, but starts to change rapidly
as power saturation is approached (the 1-dB compression
point for the circuit of Fig. 6 corresponds to an input
power of +18 dBm). Thus the standard definition [34]
may not be adequate in the case of power circuits.

The two-signal method is accurate and physically sound,
but is practically cumbersome, since it requires many
nonlinear analyses and a considerable amount of postpro-
cessing of the computed data. As an alternative, we pro-
pose the following approach [38], which has the same
degree of accuracy, but is much easier to implement.
Assume that the S parameters have to be computed at a
frequency f; as functions of the drive levels. A sinusoidal
source of frequency f; having the prescribed power level is
applied at the input port. At the output port we apply
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90
frequencies. Thus S;; and S,, can be obtained as b, /q,
and b, /a; at f;, and 5}2 and S,, are given by b, /a, and
b,/a, at f,. Since f, is very close to f,, we can assume
-100 ¥ . PRRY
F) t t . Su(f) = Szz(fg) an.d. S1g(f1_) = é’12'(](2) with negligible er-
<) a ror. A further simplification is possible when the large-sig-
@ nal § parameters are substantially independent of the
T, 8 power level of the output source E,. There is experimental
evidence that this should be approximately true in general,
7 Two-signal method even in the case of highly nonlinear devices such as bipolar
transistors operated in class C conditions [36]. With this
120 ; . — - —— assumption, E, can be set to a value much smaller than E,
° s & o 12 18 18 (e.g, E,=1072E)), so that a mixerlike spectrum can be
Input Available Power (dBm) used, with E; playing the role of “local oscillator” and E,
Fig. 7. Large-signal output reflection coefficient S, of the biased FET  that of “radio frequency.” This reduces the number of

depicted in Fig. 6 versus input available power.

another sinusoidal source having the prescribed output
power level, but a frequency f, slightly different from f;,
e.g., f,— f1=107%f,. As a consequence, the device is oper-
ated in a quasi-periodic regime whose spectrum consists of
the intermodulation products of f; and f, up to a given
order (typically around 8 at high drive levels). If a two-tone
analysis algorithm based on the two-dimensional Fourier
transform is adopted, infinite discrimination between the
two exciting signals is obtained no matter how close their

spectral lines to be accounted for in the analysis (typically
by a factor of 3), and makes convergence much easier to
achieve.

The results of this analysis for the power FET shown in
Fig. 6 are given in Fig. 7. The large-signal S parameters
obtained in this way can he considered to be identical to
those generated by the two-signal method of [36] for all
practical purposes. Note that for the case considered the S
parameters remain virtually unchanged when the available
power of the output source is swept between —28 dBm
and +12 dBm.
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C. Two-Tone Intermodulation Distortion in a FET Mixer

As a final example of application, we consider the
single-ended FET gate mixer whose topology is schemati-
cally depicted in Fig. 8. This mixer was designed for a
conversion gain of 7.25+0.25 dB and an input return loss
of at least 13 dB over an IF band ranging from 100 to 1100
MHz [12], [13]. To analyze IM distortion, two RF signals
of equal amplitudes are fed to the mixer input together
with the L.O. The frequency values considered are f,=
8 GHz (1.0), f, =8.50 GHz, and f,=8.51 GHz. Four LO
harmonics and all IM products of the two RF signals up to
the third order are taken into account, for a total of 112
frequencies plus dc. This analysis may be run in about 19
CPU seconds on a Cray X-MP/48. The results of this
simulation are shown in Figs. 9 and 10. The quantities
considered are the IF output f;— f; (510 MHz) and the
down-converted third-order IM product 2f, — f, — f; (520
MHz). These are plotted as functions of the RF input
power in Fig. 9, and of the LO power in Fig. 10 (solid
lines). From Fig. 9 the extrapolated third-order intercept
point is found to be +16.48 dBm (IF output power—see
[39] for reference). Fig. 10 shows the appearance of the
typical sharp minima and maxima which have been experi-
mentally observed in both passive and active microwave
mixers [40]-[42].

A hybrid version of this mixer was built for demonstra-
tional purposes using an AVANTEK AT-8251 device. The
device equivalent circuit was derived from dc and scatter-
ing-matrix information by numerical optimization, follow-
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Fig. 10. Mixer IF output and near-carrier third-order IM product ver-
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ing the method outlined in [32]. The fundamental device
parameters are an [,qs of about 100 mA, a zero-voltage
barrier capacitance of 0.42 pF, and a pinch-off voltage of
2 V. The measured IF output and IM product are shown
in Figs. 9 and 10 (dashed lines). The agreement with the
computed results is found to be excellent: in particular, the
local oscillator level yielding minimum near-carrier IM
products can be predicted with high accuracy.
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